Curriculum Errata Notice ### 2024 Pre-Read CFA Program #### **UPDATED 27 AUGUST 2025** This document outlines the errors submitted to CFA Institute that have been corrected. Due to the nature of our publishing process, we may not be able to correct errors submitted after 1 September 2024 in time for the publication of the following year's print materials. However, we update all errors in the Learning Ecosystem (LES) and in this document at the end of each month. We recommend checking either the LES or this document regularly for the most current information. Depending on when you purchase the print materials, they may or may not have the errors corrected. All errors can be submitted via https://cfainst.is/errata # Table of Contents #### Contents | Quantitative Methods | 3 | |---|---| | Interest Rates, Present Value, and Future Value | | | Organizing, Visualizing, and Describing Data | | | Probability Concepts | | | | | | Common Probability Distributions. | | | Basics of Hypothesis Testing | | | Economics | | | Topics in Demand and Supply Analysis | | | Financial Statement Analysis | | | Inventories | 7 | | Non-Current (Long-Term) Liabilities | | # **Quantitative Methods** # Interest Rates, Present Value, and Future Value | Lesson | Location | PDF
Pg | Revised | Correction | | |-----------|-------------------------------|-----------|--------------------|---|--| | Solutions | Solution to
24 – part "I" | 54 | 29 January
2024 | Replace: | With: | | | | | | 0 1 2 17 18 19 20 21
(X) (X) (X) \$20,000 \$20,000 \$20,000 \$20,000 | 0 1 2 17 18 19 20 -20,000 -20,000 -20,000 -200000 X X X X | | Solutions | Solution to 24 – part "iii" | 54 | 29 January
2024 | Replace:
The present value of the college costs as of t= 17 is \$70,919. | With: The present value of the college costs as of t= 17 is \$74,464. | | | | | | $PV = \$20,000 \left[\frac{1 - \frac{1}{(1.05)^4}}{0.05} \right] = \$70,919$ | $PV = $20,000 \left[\frac{1 - \frac{1}{(1.05)^4}}{0.05} \right] \times 1.05 = 74,464$ | | Solutions | Solution to
24 – part "iv" | 54 | 29 January
2024 | Replace: | With: | | | | | | $\$70,919 = \left[\frac{(1.05)^{17} - 1}{0.05}\right] = 25.840366X$ | $$74,464 = \left[\frac{(1.05)^{17} - 1}{0.05}\right]X = 25.840366X$ | | | | | | X = \$2,744.50 | X = \$2,881.69 | | Solutions | Solution to
24 – part "iv" | 54 | 29 January
2024 | Replace:
FV \$70,919 | With: FV \$74,464 | # Organizing, Visualizing, and Describing Data | Lesson | Location | PDF
Pg | Revised | Correction | | |------------------------------------|--------------------------------------|-----------|--------------------|--|---| | Measures of
Central
Tendency | Preceding
Example 10 | 112 | 29 January
2024 | | Add: The harmonic mean only works for non-negative numbers, so when working with returns that are expressed as positive or negative percentages, we first convert the returns into a compounding format, assuming a reinvestment, as $(1+R)$, as was done in the geometric mean return calculation, and then calculate $(1+harmonic mean)$, and subtract 1 to arrive at the harmonic mean return. $(1+R_{harmonic})=n\sum [1/(1+R_n)]_{z}R_{harmonic}$ $=n\sum [1/(1+R_n)]-1$ | | Measures of
Central
Tendency | Paragraph
following
Example 11 | 113 | 10 July 2024 | Replace: Since they use the same data but involve different progressions in their respective calculations (that is, arithmetic, geometric, and harmonic progressions), the arithmetic, geometric, and harmonic means are mathematically related to one another. While we will not go into the proof of this relationship, the basic result follows: Arithmetic mean × Harmonic mean = Geometric mean ² . However, the key question is: Which mean to use in what circumstances? | With: Since they use the same data but involve different progressions in their respective calculations (that is, arithmetic, geometric, and harmonic progressions), the arithmetic, geometric, and harmonic means are mathematically related to one another. While we will not go into the proof of this relationship, the basic result follows: Arithmetic mean × Harmonic mean = Geometric mean². However, the key question is: Which mean to use in what circumstances? The key question is: Which mean to use in what circumstance? | ## **Probability Concepts** | Lesson | Location | PDF
Pg | Revised | Correction | | |--|------------------------------|-----------|--------------------|--|---| | Probability
Concepts and
Odds Ratios | Example 1 –
Solution to 2 | 159 | 29 January
2024 | Replace: The odds = Probability (passing) / Probability (not passing). If Y = Probability of passing, then $4 = Y / (1 - Y)$. Solving for Y, we get 0.80 as the probability of passing. | With:
In the example, if the odds against your second colleague passing the exam are 1 to 4, this means the probability of the event is $4/(1+4) = 4/5 = 0.80$. | # Common Probability Distributions | Lesson | Location | PDF
Pg | Revised | Correction | | |---|---------------------------------|-----------|--------------------|--|--| | Discrete and
Continuous
Uniform
Distribution | Equation
before
Exhibit 4 | 197 | 29 January
2024 | Replace: $F(x) = \begin{cases} \frac{0 \text{ for } x < a}{x - a} \\ \frac{b - a}{1 \text{ for } x < b} \end{cases} \text{ for } a \le x \le b.$ | With:
$F(x) = \begin{cases} 0 \text{ for } x < a \\ \frac{x - a}{b - a} \text{ for } a \le x \le b \\ 1 \text{ for } x > b \end{cases}$ | | Binomial
Distribution | Exhibit 7 | 207 | 29 January
2024 | Replace: Binomial, $B(n,p)$ Np $np(1-p)$ | With: Binomial, <i>B(n,p) np np</i> (1-p) | | Solutions | Solution to
25 | 235 | 29 January
2024 | Replace: A is correct, since it is false. | With: B is correct, since it is false. | ## Basics of Hypothesis Testing | Lesson | Location | PDF
Pg | Revised | Correction | | |---|---|-------------|--------------------|--|--| | The Process of
Hypothesis
Testing | Two-Sided
vs. One-
Sided
Hypothesis
first
sentence | 271 | 20 August
2024 | Replace: We would state the null hypothesis as Ha : $\mu \neq 6$. and the alternative as Ha : $\mu = 6$ | With: We would state the null hypothesis as $H0: \mu = 6$. and the alternative as $Ha: \mu \neq 6$ | | State the
Decision Rule | Exhibit 8 –
Procedure #2 | 278 | 29 January
2024 | Replace: Compare the calculated test statistic with the bounds of the confidence interval. | With: Compare the hypothesized parameter's value with the bounds of the confidence interval. | | Tests
Concerning a
Single Mean | Example 8 –
Solution to 2
– Step 2 | 289 | 29 January
2024 | Replace: with $1,304 - 1 = 1,303$ degrees of freedom. | With: with 1,304 - 1 = 1,303 degrees of freedom. | | Practice
Problems | Question 13 | 309-
310 | 29 January
2024 | Replace: 13. For each of the following hypothesis tests concerning the population mean, μ , state the conclusion regarding the test of the hypotheses. | With: 13. For each of the following hypothesis tests concerning the population variance , state the conclusion. | | Solutions | Solution to 3 | 317 | 29 January
2024 | Replace:
A is correct. | With: B is correct. | ## **Economics** # Topics in Demand and Supply Analysis | Lesson | Location | PDF
Pg | Revised | Correction | |--------|----------|-----------|---------|------------| |--------|----------|-----------|---------|------------| | Demand
Concepts | Under
Equation 3 | 5 | 13 August
2025 | Replace: The quantity of gasoline demanded is a function of the price of gasoline (6.39 per liter) | With: The quantity of gasoline demanded is a function of the price of gasoline (P_x 6.39 per liter) | |--------------------|---------------------|---|-------------------|--|--| | | | | | | | # **Financial Statement Analysis** #### Inventories | Lesson | Location | PDF
Pg | Revised | Correction | | |-----------|-------------------|-----------|--------------------|--|--| | Solutions | Solution to
20 | 176 | 29 January
2024 | Replace: No LIFO liquidation occurred during 2018; the LIFO reserve increased from ¥10,120 million in 2008 to ¥19,660 million in 2018. | With: No LIFO liquidation occurred during 2018; the LIFO reserve increased from $\pm 10,120$ million in 2017 to $\pm 19,660$ million in 2018. | ## Non-Current (Long-Term) Liabilities | Lesson | Location | PDF
Pg | Revised | Correction | | |---------------------|------------------------------|-----------|--------------------|------------|-------| | Accounting for Bond | Example 4 –
Solution to 4 | 248 | 29 January
2024 | Replace: | With: | | Lesson | Location | PDF
Pg | Revised | Correction | | |---|----------|-----------|---------|--|--| | Amortization,
Interest
Expense, and
Interest
Payments | | | | Under the straight-line method, the premium is evenly amortised over the life of the bonds. In this example, the £44,518 premium would be amortised by £8,903.64 (£44,518 divided by 5 years) each year under the straight-line method. So, the annual interest expense under the straight-line method would be £41,096.36 (£50,000 less £8,903.64). | Under the straight-line method, the premium is evenly amortised over the life of the bonds. In this example, the £44,518 premium would be amortised by £8,903.60 (£44,518 divided by 5 years) each year under the straight-line method. So, the annual interest expense under the straight-line method would be £41,096.40 (£50,000 less £8,903.60). |